
User’s Manual for Pelegant

Program Version 17.1.1

Advanced Photon Source

Yusong Wang, Michael Borland, Robert Soliday

April 3, 2007

1 Highlights of What’s New in Version 17.1.1

Most of efforts were put on the parallelization of elements with collective effects, which include
wakefields and coherent synchrotron radiation. For a lattice dominated by collective effects, the
program scales well on 30 processors. Performance improvement for a larger number of processor is
on-going.

1.1 The new parallelized elements

CHARGE CLEAN CSRCSBEND CSRDRIFT FRFMODE FTRFMODE ILMATRIX RFMODE
TRFMODE TRWAKE TWISSELEMENT WAKE ZLONGIT ZTRANSVERSE

1.2 Tracking rf cavity with wakefields is available

This function was disabled in the previous version because of the synchronization problem when
calling a serial element from a parallelized element. It becomes possible after the wake elements are
parallelized.

2 Introduction

Pelegant stands for “parallel elegant,” which is a parallelized version of elegant [1]. Written in the
C programming language with MPICH, the Pelegant has been successfully ported to several clusters
and supercomputers, such as the “weed” cluster (a heterogeneous system of 100 CPUs) at Advanced
Photon Source (APS), and the Jazz cluster (350 Intel Xeon CPUs) at Argonne National Lab (ANL)
and the BlueGene/L supercomputer (1024 dual PowerPC 440 nodes) at Argonne National Lab.
Thanks to careful design in parallelization and good architecture of the serial elegant, the Pelegant
achieves very good performance. For example, for a simulation of 105 particles in APS including
symplectic element-by-element tracking, accelerating cavities, and crab cavities, the simulation time
was reduced from 14.3 days to 42 minutes on 512 CPUs of the BlueGene/L (BG/L) supercomputer.
The speedup for this particular simulation is 484 with efficiency near 95%.

This document describes how to build Pelegant, run the code and optimize the performance.
Finally, appendices are included describing which elements have been parallelized and which com-
mands have been used in the regression tests. The user should be familiar with the User’s Manual
for elegant before reading this document.

3 Building Pelegant

The steps in building Pelegant on Linux are as follows:

1



1. Install MPICH (1 or 2) [2]. Your cluster administrator will need to do this.

2. If you are using an x86 processor, set the environment variables HOST ARCH and
EPICS HOST ARCH to linux-x86. If you are using a ppc processor, you can set these variables
to linux-ppc.

3. If EPICS/Base is already installed on your computer, you can skip to the next step. Pelegant
is built using the EPICS/Base configure files available from the OAG web site at APS. You
will need to unpack this to create epics/base/configure. Go to the epics/base directory and
type “make.”

4. Next you will need to download the EPICS extensions configure files from the OAG web site.
This will unpack to create epics/extensions/configure. Go to the epics/extensions/configure
directory and type “make.”

5. Download the latest SDDS source code from the OAG web site. This will unpack to create
epics/extensions/src/SDDS. Go to this directory and type “make.”

6. Download the OAG configure files from the OAG web site. This will unpack to create
oag/apps/configure. Go to this directory and type “make.”

7. Download the Pelegant source code from the OAG web site. This will unpack to create
oag/apps/src/elegant.

8. Set the path for your installation of MPICH in Makefile.OAG in oag/apps/src/elegant.

9. From oag/apps/src/elegant, run the following command to build Pelegant:

make Pelegant

Pelegant should now exist at oag/apps/bin/linux-x86/Pelegant. (To build the serial version,
just type “make.” This will also build related software.)

elegant and Pelegant share the same source code. Makefile will decide which part of code
will be compiled according to the binary file (either Pelegant or elegant) you want to build.

If you have any question about installing the Pelegant, please send an email to soliday@aps.anl.gov.

4 Running a simulation with Pelegant

Running a parallel job is just as easy as starting a serial job, while the time spent on a job can
be reduced from several days to hours, or even minutes. Pelegant has been tested under both
MPICH-1 and MPICH-2. We suggest using MPICH2 if possible, as it shows better stability in our
regression test. In the future, we may also add new features available in MPI-2, such as parallel
I/O, remote memory operations, to improve the performance of Pelegant for some simulations.

4.1 Running Pelegant with MPI command

An examples directory is available under the elegant directory. Users can run a simulation with a
given lattice and input files according to the version of the MPI implementation.

For example, we can run the parallel elegant on 11 processors (10 working processors) with the
following commands: 1

1) For MPI-1, we can use the following syntax:
mpirun -np 11 Pelegant manyParticles p.ele

1For the weed cluster in APS, all the MPI-related commands have been put in the options of csub command. User

could just type:

csub -mpich2 11 Pelegant manyParticles p.ele

2



2) For MPI-2, mpiexec is strongly encouraged to start MPI programs, e.g.,
mpiexec -np 11 Pelegant manyParticles p.ele

One can run another simulation with the serial version of elegant for comparison at the same
time:

elegant manyParticles s.ele
The contents of the input files are same, while “ p” and “ s” are corresponding to the input files

of Pelegant and elegant, respectively. User should check the elegant manual to prepare the input
file.

In principle, users can run simulations on any number of processors. We have tested the program
with 1024 nodes on the BG/L supercomputer at Argonne National Lab. However, the number of
processors can not be more than the number of particles to track, as it will not use the resource
efficiently.

4.2 Validating the result

The simulations above were finished in around 1 minute for Pelegant and 10 minutes for elegant
on the AMD Athlon nodes of the weed cluster at the APS. To convince ourselves the results of the
two versions of elegant are same, one can compare the output files with the sddsdiff command,
which should be available in the SDDS toolkit. For example, to examine the particle coordinates at
interior points, we can type:

sddsdiff manyParticles p.w2 manyParticles s.w2
which should return that two results are identical.

Validating a parallel program against a uniprocessor program with the requirement of bitwise
identical result is notoriously difficult [3], as we may meet some new problems raised from parallel
computing, such as different ordering of summations, or a nonscalable random number generator.
Although the simulation results with the discrepancies should conform to IEEE 754 within some
tolerance, more consistent results can be expected with a more accurate numerical algorithm, such
as Kahan’s summation formula [4], which has been employed in both serial and parallel versions of
elegant.

We ran a regression test of 92 cases and validated the results of Pelegant with those of elegant.
As the random number sequences generated by one CPU and multiple CPUs usually are not the
same, some test examples can’t be validated by comparing the results of elegant and Pelegant.
Those examples have been validated either by mathematical formulae or their physical meaning.

5 Using Pelegant efficiently

As the elegant parallelization is an on-going project, so far we have parallelized 74 out of 95
elements for tracking simulations. The elements that have been parallelized are listed at the end of
this manual. If most time-intensive parts of a simulation have been parallelized, we can expect good
speedup and efficiency. If a simulation is dominated by elements that have not been parallelized,
e.g., wakefield elements, we recommend using the serial elegant at this point.

5.1 Parallelization overview

To help users run simulations with Pelegant more efficiently, we would like to introduce our paral-
lelization approach briefly. We parallelize elegant using a master/slaves (manager/workers) model.
The time-intensive tracking parts of elegant are being parallelized gradually. The other parts are
done (redundantly) by all the processors, which is acceptable since those processors have already
been allocated to a particular Pelegant run. We divide the beamline elements into four classes:

1. Parallel element: only the slave processors will do the tracking. Each slave is responsible for
a portion of particles.

3



2. MP (multiprocessor) algorithm: the master will participate in the tracking, but it only gets
the result of collective computations (e.g., sum, average) from the slaves, without doing any
computations itself.

3. Uniprocessor element: must be done by master (for now) and modifies particle coordinates.
An example would be wakefield elements.

4. Diagnostic: same as the uniprocessor element, but doesn’t change particle coordinates.

A flag was added to elegant’s dictionary for each beamline element to identify its classifica-
tion. The master is responsible for gathering and scattering particles as needed according to this
classification. Communications are minimized to achieve the best efficiency of parallelization. For
example, it is not necessary to communicate the coordinates of particles between master and slaves
when tracking through two continuous parallel elements. Similarly, we only need to gather particle
coordinates from slaves to master (without subsequent scattering) when the particles go through a
diagnostic element, such as a WATCH point with coordinate output.

5.2 Achieving high performance

In our master/slave model, the master will be responsible for I/O operations and communicating
with the slave processors only, i.e., it will not do the tracking for most of the elements. As a result, 10
or more processors are recommended when running simulation with Pelegant. To run simulations
efficiently, we also suggest when possible that the user arrange all serial elements in a continuous
sequence, which will minimize the communication overhead for gathering and scattering particles.
This will be unnecessary in the future when all of the elements are parallelized.

By default, Pelegant is built in such a way that it does load balancing after each pass through the
accelerator. This is particularly important when the user does not have exclusive use of the nodes.
When running Pelegant in an environment where only one user is allowed to run a job on a computer
node at a time, then Pelegant can be optimized by defining the complier flag CHECKFLAGS=1
in the Makefile.OAG. In this case, the load balance will be checked only after the first turn or when
the particle number is changed, instead of every turn.

For ANL users who need to run simulations that would normally take several weeks or months
with serial elegant, we can provide help to perform runs on the Jazz cluster (350 nodes, each with
a 2.4 GHz Pentium Xeon) or the BlueGene/L supercomputer (1024 dual PowerPC 440 700MHz
512MB nodes) at ANL. Pelegant is pre-built and available on both systems.

6 What is not supported

In our regression test for Pelegant, we excluded two types of tests, which are not supported in this
version of Pelegant:

1. All of the tests tracking beam with one particle (or the number of particles is less than the num-
ber of processors) were excluded, as such a simulation will not benefit from the parallelization
approach we employed.

2. The third type of tests we excluded are those needing slice analysis or an aperture search.
They are not supported in Pelegant at present.

As some elements have not been parallelized in this version of Pelegant, it is possible that
Pelegant will hang and never stop for some particular simulations, which happens when calling a
parallelized function from a serial element. We suggest running a simulation with a small work-
load first before trying the final time-intensive simulation. Also, use of WATCH elements with
FLUSH INTERVAL=1 can be helpful in verifying that progress is being made. We listed the com-
mands that have been tested in the appendices. Users can report bugs with all the input files to
ywang25@aps.anl.gov or borland@aps.anl.gov.

4



7 Appendices

7.1 Elements that have been parallelized in Pelegant

The particular physical elements that take advantage of parallel computation in the present version
of the code are:

1. Drift spaces, dipoles, quadrupoles, sextuoples, higher multipoles, dipole correctors, and wiggler
magnets, whether symplectically integrated or modeled with a transport matrix (up to 3rd
order). Symplectically integrated elements can optionally include both quantum and classical
synchrotron radiation effects.

2. Radio frequency cavities, including accelerating and deflecting cavities, with constant field
amplitude.

3. Accelerating cavities with phase, voltage, and frequency modulation or ramping.

4. Beam collimating and scraping elements.

5. Field-map integration elements, such as dipoles, x-y dependent maps, and solenoids.

6. Reference energy matching points.

7. Beam watch points, which may involve parallel computation of beam moments or serial dump-
ing of particle coordinates.

8. Scattering elements, including lumped-element simulation of synchrotron radiation.

9. Elements with collective effects, including wakefields and coherent synchrotron radiation.

Here is an explicit list of the elements:
ALPH BEND BEND BMAPXY CHARGE CLEAN CSBEND CSRCSBEND CSRDRIFT CWIG-
GLER DRIFT ECOL EDRIFT EMATRIX ENERGY FLOORELEMENT FMULT FRFMODE
FTRFMODE HCOR HMON HVCOR ILMATRIX KICKER KPOLY KQUAD KSBEND KSEXT
LMIRROR LTHINLENS MAGNIFY MALIGN MAPSOLENOID MARK MATR MATTER MAX-
AMP MODRF MONI MULT NIBEND NISEPT PEPPOT QFRING QUAD RAMPRF RCOL RE-
CIRC REFLECT RFCA RFCW RFDF RFMODE RFTM110 ROTATE SAMPLE SCATTER SC-
MULT SCRAPER SEXT SOLE SREFFECTS STRAY TAYLORSERIES TRFMODE TRWAKE
TUBEND TWISSELEMENT VCOR VMON WAKE WIGGLER ZLONGIT ZTRANSVERSE

7.2 Commands that have been tested for Pelegant

In addition to tracking, the following features of elegant may be used in the parallel version:

1. Optimization with tracking. In this case, the optimization is supervised at the serial level
while the tracking is done in parallel.

2. Computation and output of Twiss parameters and transport matrices along a beamline.

3. Computation and output of beam statistics along a beamline.

4. Alteration of element properties, loading of element parameters from external files, and trans-
mutation of element types.

5. Scanning of element properties in loops. In this case, the scanning is supervised at the serial
level while the tracking is done in parallel.

6. Use of internally generated or externally supplied particle distributions.

7. Addition of random errors to accelerator components.

5



8. Computation and output of closed orbits.

Here is an explicit list of the commands:

alter_elements

bunched_beam

closed_orbit

error_control

error_element

link_elements

load_parameters

matrix_output

optimization_setup

optimization_term

optimization_variable

optimize

run_control

run_setup

sasefel

save_lattice

sdds_beam

stop

subprocess

track

transmute_elements

twiss_output

vary_element

References

[1] M. Borland, “elegant: A Flexible SDDS-Compliant Code for Accelerator Simulation,” Advanced
Photon Source LS-287, September 2000.

[2] MPICH Home Page. http://www-unix.mcs.anl.gov/mpi/

[3] W. D. Gropp, “Accuracy and Reliability in Scientific Computing,” chapter Issues in Accurate
and Reliable Use of Parallel Computing in Numerical Program. SIAM, 2005.

[4] D. Goldberg, “What every computer scientist should know about floating-point arithmetic,”
ACM Computing Surveys, 23(1):5–48, March 1991.

6


